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Abstract-A method to model the thermoelastic response of flat laminated composites using a
large radius axisymmetric hollow layered cylinder model is presented. An axisymmetric concentric
cylinder model and a flat laminate model, each based on Reissner's variational principle with
equilibrium stress fields, are compared. The stress components and the governing equations of the
axisymmetric concentric cylinder formulation for a cylinder of infinite radius are shown analytically
to be equivalent to the flat laminate formulation. Numerical results for the axisymmetric free edge
stress field are shown to be nearly identical to the flat laminate free edge stress field solution. Selected
results for the elastic stress fields and energy release rates in composite laminates with free edge
and/or internal delaminations and transverse cracking are presented. © 1998 Elsevier Science Ltd.

INTRODUCTION

A variational theorem by Reissner (1950) is used to study the elastic stress fields in large
radius axisymmetric cylinders. The variational theorem has been shown by Pagano (1978a,
1978b) to accurately describe stress fields in flat laminates. Pagano (1986, 1991, 1993)
also used the theorem to describe involute bodies of revolution and concentric cylinder
assemblages. Models based on this approach have been shown to accurately describe stress
fields in the vicinity of stress risers and the axisymmetric model has been shown to provide
accurate predictions of energy release rates. In addition, the models have the capability to
provide improvements in the accuracy of the predicted stress fields by subdividing physical
layers into sub-layers.

The present formulation employs the idea that the stress field in an axisymmetric cylinder
approaches that in a long flat coupon as the radius to thickness ratio approaches infinity,
as shown in Fig. 1, provided the flat coupon stresses are independent of the length coor­
dinate, For cylinders with a large radius to thickness ratio, subjected to internal or external
pressure and in the absence of stress concentrations, the hoop strain is nearly uniform
through the wall thickness. As stated in an earlier article by Pagano (1971), if the state of
stress in each layer is uniform, the response is given by classical lamination theory. The
assumption of a negligible difference between the inner and outer wall hoop strain (neg­
lecting axial end boundary effects), is a basic assumption in the well-known thin walled
pressure vessel formula for homogeneous isotropic cylinders (Ie = PR/t where P is either
internal or external pressure. In the limit as R/t approaches infinity, the gradient of the
hoop strain through the wall thickness approaches zero, generating a stress-strain field
equivalent to a flat composite coupon under a uniform axial strain. Using this methodology,
we can use an axisymmetric cylinder with R » t to represent a flat laminate. The use of a
hollow cylinder with R » t to model the free edge stress field in a flat laminated composite
was employed by Dandan (1988) to model off axis laminates and has been used by Sandhu
et al. (1992) to study free edge delamination initiation in graphite epoxy laminated coupons,
The capability of the existing axisymmetric formulation for modeling micromechanical
damage, including interface debonding, matrix cracking and fiber breaking in brittle matrix
composites as demonstrated by Pagano (1991), also makes it ideal for analyzing delami­
nation and transverse cracks in flat laminates.
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The present model, based on a modification of Pagano's (1991) formulation, employs
Reissner's theorem to predict the stress fields and energy release rates for cracked flat
laminates containing orthotropic layers. The model can be used to examine the initiation,
propagation and interaction of damage for thermoelastic problems in flat laminates, as
shown in Fig. 2. As discussed by Wang and Crossman (1980), it is widely recognized
that free-edge and internal delaminations as well as transverse ply cracking in composite
laminates are the most commonly observed types of damage and that delaminations typi­
cally initiate from transverse matrix cracks. This damage often results in the loss of strength
and stiffness, changes in the coefficient of thermal expansion and also provides pathways
for moisture or other corrosive agents. These matrix dominated failure modes can lead to
fiber breakage in highly loaded plies and eventually to failure of the laminate. To understand
the damage tolerance, damage resistance and reliability of composite laminates, we must
first understand the formation, propagation and interaction of the various ply level damage
modes.

The formulation for hollow concentric cylinders with large, but finite, radius to thickness
ratios, will be presented. This formulation called the large radius cylinder model is required
for computer code modeling. To show the analytical basis for modeling flat laminates using
an axisymmetric formulation, a theory for cylinders with R/t -+ 00, based on the large
radius model, is also presented. This model, called the infinite radius cylinder model, is
compared to a flat laminate formulation based on the same variational principle. The
infinite radius model and the flat laminate model are shown to be analytically equivalent.
A numerical comparison of the large radius cylinder and the flat laminate models show
that for R/t :;;: 10,000, the predicted stresses are nearly identical. Predictions for crack tip
stresses and energy release rates for cracked laminates are presented and compared with
published results.
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LARGE RADIUS CYLINDER FORMULAnON

An axisymmetric variational formulation for modeling the stress field in a solid cyl­
indrical body surrounded by concentric cylinders was developed by Pagano (1991). Theor­
etically, the formulation is valid for all cylinder wall thicknesses and radii. However,
numerical overflow problems arise for cylinders with large radius to thickness ratios due to
terms with large powers of the radial coordinate in the governing equations.

The radial geometry of a single layer hollow cylinder is described by two parameters R
and t which are functions of the inner radius r\ and outer radius r2 as shown in Fig. 3. The
parameter R is defined as the average radius of the cylinder and t is defined as the cylinder
wall thickness. Then, the inner and outer radii can be expressed as

(1)

A radial variable p is now defined in terms of the radial coordinate r and the average radius
R as

p == r-R (2)

where p takes on values from - tl2 to t12. Therefore, for integration in the radial direction
we have

r[h(r)]r" dr = r:/2 [h(R + p)](R+ p)" dp for n = 0, 1,2, .... (3)

In addition, the body is bounded by axial end planes ~ = ~" ~2' The surfaces p = ± tl2 and
the end planes ~ = ~" ~2 may be subjected to traction andlor displacement boundary
conditions that are independent of 8. Free expansion strains e, due to a temperature change
or moisture absorption are included in the formulation.

Equilibrium stress field
Stress components are represented in contracted notation for the right-handed cyl­

indrical coordinate system (~, 8, r) as

with analogous relations for the engineering strain components. The displacement com­
ponents u, v and ware in the r, 8 and ~ directions, respectively. The stress components are
assumed to have the form

(J,=pufS~ for (i = 1-6;J= 1,2, ... ,5)

where the functions plJ are functions of ~ only such that

r

r=R--.

~ ---------'
Fig. 3. Radial geometric parameters and radial variables.

(4)
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(5)

It is assumed that O"j, 0"2 and 0"6 are linear in p. Substitution of these three stress components
into the equilibrium equations for axisymmetry,

(ra3).3 +raS.l -0"2 = 0

(rash +ral,l = 0

(r2
0"4),3 +r2

0"6,1 = 0 (6)

defines the fY2 stress shape functions for 0"3, 0"4 and O"s where differentiation is denoted by
commas. For the present case we assume torsionless axisymmetry, so that 0"4 = 0"6 = O.
Since we are interested in only hollow concentric cylinders, the relationships for the core
(i.e. rl = 0) (Pagano 1991) will be neglected. The stress shape functions, as derived by
Pagano (1991) are written as functions of the inner radius rj, the outer radius r2 and the
radial coordinate r. Since r = R +p, we can represent l/r as a series given by

(7)

allowing the shape functions to be written in terms of R, t and p. LettingfY2 represent the
shape functions of Pagano's original formulation, and substituting (2) with (7) into the
definitions of the shape functions fY2, results in the following

( S) _ r r2-r ~ t-2p ( p)flo ----=--~ 1+~
rlr2-r, 2t R

(8)
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Where the approximations imply R ~ R + t has been invoked. We now introduce modiHed
shape functions denoted by fY) which are variants offg~ and we restrict their use to the set
of problems where R » t. We define

and

fP) = Rf~3j f~3) = R4f~3j

f~5) = R3f~~ f~3) = f~3j

fY) =fyl for(i= 1,2,3,5;J= 1,2).

(9)

(10)

Therefore, the present stress shape functions for torsionless axisymmetric hollow cylinders
with R » tare

f (1) _f(2) -f(3) - t-2p f(l) -f(2) _f(3) _ 2p+t
I - I - 1 - 2t 2 - 2 - 2 - 2t

f~3) = (3R+ p) (p2 -~) f~3) = R (p2 _~)

f~3) = (R-p) (p2 _~)

f(5) = t-2~ (l + f) f(5) = 2p+t (1 + f)
I 2t R 2 2t R

(11)

MultiplyingfY~ by factors of Rn to obtainfY) in (9) reduces the magnitude of the powers
of R in the governing equations, thereby reducing the likelihood of numerical overflow
during implementation.

Governing equations
Using Reissner's variation formulation, Pagano (1991) derive the governing field

equations in which both stresses and displacements are subject to variation. The substitution
of assumed (Jij into the Reissner functional gives rise to weighted displacements. The
relationship between the weighted displacements from the original formulation and those
from the current formulation are obtained by the use of (2) and (3). Let the weighted
displacements of the current formulation be defined as

f
l /2

(q,q*,ij,q) = -t/2 q(l,p,p2,p3)dp (12)

where q represents displacement components u or w. If % represents the displacement
components in the original formulation, then the relationships between the current and
original weighted displacements are given by

q= qo-2Rq~+R2qQ

q = qo-3Rijo+3R 2q:-R 3 tjo. (13)
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Substituting (13) into the definitions given by Pagano (1991), using (9) and neglecting
terms that are negligible for R » t, leads to the strain measures,

ut-2u*
fl21 = 2t

ut+2u*
fizz =~-

Ru' ( R) ( I 2) 1 (R ) (4 I)tl 51 =2+ 1-[ u*'+ 2R-t u-RtiH [-1 IV+ t-R w*

Ru' (R) ( I 2) I (R ) (4 I)trS2 = - + 1+- u*' + - + - u+ -u- - + I IV- - + - w*
2 t 2R t Rt t t R

3Rt2

tl53 = 3Ru' - -4-u' -6Rw*

with all other flu = O. Then we have

l
i,j = 1,2, 3, 5 and J, K = 1,2

Xu=flu-Eu-SijKJPjK for i,j=3 and J,K=3,4,5

i,j = 5 and J, K = 3

where

f
l!2

Eu = eJT(R+p)dp
-t/2

and

(14)

(15)

(16)

(17)

where ei represents the hygrothermal free expansion strains and Sij are the components of
the elastic compliance matrix. The constitutive equations are then given by

Also,

with

XII = XI2 = X21 = XZZ = X33 = X34 = X35 = XS3 = O.

P31 = - (R- ~)Ul P32 = (R+ ~)U2

P51=-(R-~)WI pS2=(R+~)W2

(18)

(19)
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I
i = 1, 2 and J = I, 2

flu = 0 for i = 3 and J = 3,4,5

i = 5 and J = 3

1031

(20)

where u\ = u(R - t12, 0, U2 = u(R + t12, ~), w) = w(R - tI2,~) and W2 = w(R + t12, ~). Let­
ting F io = 0 represent the equilibrium equations in the original formulation, the relationships
between the current and the original equilibrium equations are given by

F4 = F20 +2RF30 + 3R 2 F40

Fs = F30 +3RF40

F 6 = F40 ·

Dropping terms that are negligible for R » t, the equilibrium equations

Fi = 0 for (i = I, 2, ... , 6)

are obtained, where

(21 )

(22)

(23)

Similarly if H io represents the end boundary functions on ~ = ~), ~2' then the current end
functions are given by
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H 3 = Hlo+R2H3o+R3H40

H4 = 2RH3o+3R2H4o

(24)

Dropping terms that are negligible for R » t, we have

Letting superscript k identify the layer, at a point on an interface (R+t/2)k =(R-t/2)k+l
(k = 1, ... ,N-1), either continuity or a mixture of traction and/or displacement com­
ponents may be prescribed. For continuity of tractions and displacements on an interface,

(26)

and

(27)

Continuity of displacements (26) is satisfied for

(28)

Therefore, eqns (27) and (28) are the interface continuity conditions between contiguous
layers. Furthermore, an interface of constant radius may be subjected to mixed boundary
conditions that are consistent with the model assumptions. The following options are
appropriate for prescribing tractions or displacements at a point on an interface ofconstant
radius

k -k k ( tJ -kP32 = P32 or X32 = - R+ 2. U2

( JP~2 = P~2
k _ t -.kor XS2 - - R+ 2. lh

k -k k ( tJ -kP31 = P31 or X31 = R- 2. Ul

(29)

(30)

(31)
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( )

k
k t_k

X51 = R- 2 WI (32)

where the prescribed quantities are denoted by tildes and ()k implies that all variables
within the () are evaluated in the kth layer. Therefore, if any (J3, (J5, U or ware discontinuous
at an interface, the value of the discontinuous traction and/or displacements must be
prescribed according to (29)-(32). Note that interface displacements appear in the gov­
erning equations only if they are prescribed, hence they are not treated as dependent
variables.

To satisfy the boundary conditions on interfaces of constant ~, one term
from each of the following products (this decomposition is not unique) can be
prescribed.

(33)

Section continuity is implied when each member of each product of (33) is continuous. For
an N layered concentric cylinder, the boundary value problem consists of 18N algebraic
and differential equations with constant coefficients in ~, given by six equilibrium eqns (22)
and eight constitutive eqns (18) and four continuity or boundary conditions with ION
boundary conditions required at each ~ = ~ 1 and ~ = ~2' The 18N unknowns for the large
radius cylinder model are it, u*, a, it, 11', w* and pjJ where (i = I, 2, 3, 5; j = I, 2 and i == 3 ;
J = 3,4,5 and i = 5; J = 3).

Rigid body displacements
The constraint of the rigid body displacement restricts the selection of totally arbitrary

traction boundary conditions in boundary values problems. Therefore, the conditions under
which the rigid body displacement is constrained will be examined. Consider the traction
boundary value problem in which free expansion strains and all stress functions Pa vanish
identically and all interfaces are continuous (actually only required for one value of ~).

From (14), it = a= u* = U = 0 as well as

where

Wk = Qk (k = I, ... ,N)

(
Q
t

)(k) = (Q
t

)(k+ I)
(k= I, ... ,N-I)

(34)

(35)

for R » t. The Qk may be expressed in terms of one arbitrary constant. Hence the rigid
body displacement components are given by (34) and (35) and specification of Wk must
accompany (and replace one of) the prescribed traction boundary conditions in traction
boundary value problems.

Equation (36) shows the system of six equilibrium equations and twelve constitutive
equations in self-adjoint matrix form that have been coded into the large radius computer
code. Since all of the field variables are not ofequal order in R, the coefficients ofcomponents
in the operator matrix contain powers of R ranging from +2 to - 3.
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COMPARISON TO FLAT LAMINATE FORMULATION
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Stress components
Pagano's (1978a, 1991) flat laminate formulation and the axisymmetric formulation

have analogous assumptions and development. That is, in the flat laminate formulation the
lJ.n lJy and IJ xy stress components are assumed linear in the transverse z-direction and
the form of the remaining three stress components are determined from the equilibrium
equations. To enforce the same constrains in the flat laminate model that are inherent in
the torsionless axisymmetric cylinder model, we assume that all stress and strain quantities

Table I. Cartesian/cylindrical coordinate system relationships

Laminate

Direction Disp.

I x u <-->

2 y l' <-->

3 z w <-->

2
1
3

Cylinder

Direction Disp.

t'

IV

u
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Table 2. Cartesian/cylindrical stress component
relationships

Flat Laminate
a~7

a;
(J.:
a;

a: ~ P2

a; = PI
t.:; = 52

r;; = s,

Cylinder
a~ = P22a, = P21

at =P12

ai- = PII
at = P32a, =P31

at = P52

as = P51

are independent of the Cartesian x-coordinate. To clarify the cylindrical coordinate system
nomenclature of the cylinder model and the Cartesian coordinate system nomenclature of
the flat laminate model, Tables I and 2 are introduced. The' +' and '-' superscripts in
Table 2 refer to the top or outer and the bottom or inner surfaces, respectively. Although
the same symbols are used for displacement components, all displacement equations used
here refer to either cylindrical or Cartesian coordinates, i.e., there are no mixed relations.
Therefore, this duplicity should not lead to confusion.

Using the equilibrium eqns (22) with (23) and dropping negligible terms, we can write

(37)

where differentiation with respect to the cylindrical ~-coordinate is denoted by primes.
Substituting (8) into (4), the stress components are

(t-2p) (2p+ t)
at = Pit 2t +P12 2t

(t-2p) (2p+t)
0'2 = P2t 2t +P22 2t

(t-2p) ( p) (2p+t) ( P)
AS =PSI 2t 1+R' +PS2 2t 1+R'

(38)

Therefore, for R/t -+ 00 (38) reduces to



Stress fields and energy release rates

(t-2p) (2p+t)
0"1 = Pil 2t +P12 2t

(t-2p) (2p+t)
0"2 = P21 2t +P22 2t

1037

(39)

From the flat laminate formulation, letting t represent the layer thickness, we write the
generalized stresses as

(40)

Substituting (40), into the flat laminate stress relationships (eqns (8-9), Pagano 1978a) with
the equilibrium equations (eqns (26), Pagano 1978a), results in the following expressions
for the stresses in the flat laminate formulation

_ (t-2z) + (2z+t)
O"y = O"y -2-t- +O"y -2-t-

_ (t-2z) + (2z+t)
O"x = O"x -2-t- +O"x -2-t-

(41)

By comparing the infinite radius cylinder model stress components (39) and the flat laminate
stress components (41) it can be seen that they are equivalent.

Governing equations
The cylinder relationships given by (14), (23) and (25), have been developed for the

case of R » t. As R/t ~ 00 (14) becomes
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R R R R
'111 = ~},i/ - -w*' '112 = -IV' + ~IV*'

2 t 2 t

ilt - 2u* ilt +2u*
'121 2t '122 = 2t

3Rt2

- 3R" -, 6R *'153 - U - -4-u - IV

with all other '1u = 0, while (23) become

and (25) become

(42)

(43)

(44)

Note that the governing equations for the infinite radius model include one less kinematic
variable, namely U, and one less equilibrium equation, namely F6 = 0, than the large radius
cylinder model. The uterms in the strain measurements '133, '151 and '152 of (14) are negligible
as R/t ---> iXJ. Also, since udoes not appear in the governing equations for the infinite radius
model, F6 does not exist.

Equilibrium equations
The seven equilibrium equations of the flat laminate model (eqns (26) from Pagano

1978a), are reduced to the following set of five equations if stress and strain components
are independent of x.
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t
M}',y - V,. + 2(T;;; +T:Z) = °
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(45)

Substituting generalized stresses (40) into the equilibrium eqns (45) and simplifying, results
in two non-trivial equations. The two non-trivial relationships, from the first and second
of (45), are

(46)

For Fi = 0, (43) identifies the five equilibrium equations for the infinite radius cylinder
model. Substituting (37) into (43) and simplifying, yields two non-trivial equations, from
FI = °and F3 = 0, These non-trivial relationships for R/t ---> 00 are

t
2(P'12+P'II)+PS2-PSI =0

(47)

It can be seen that the flat laminate eqns (46) are equivalent to the cylinder equations (47)
for R/ t ---> 00.

Constitutive equations
The weighted displacement field variables in the flat laminate model (Pagano, 1978a)

and the cylinder model (Pagano, 1991) use the same weighted displacement nomenclature,
however, different normalization was used in the two models. The relationships between
the cylindrical (c) weighted displacements, using definition (12), and the flat laminate (f)
weighted displacements are

(48)

The cylinder model (Pagano, 1991) is developed for materials that are orthotropic with
respect to the ~-direction. From small deformation theory, the laminate axial strain is
E, = U.x ' Using the weighted displacement definitions from Pagano (l978b), the strain and
curvature resultants are given by El = (t/2)u.x and K 1 = (t2/4)u~, respectively. Imposing
orthotropy and rxz = r x}' = 0, which is the condition analogous to torsionless axisymmetry,
to the flat laminate model, reduces the ten flat laminate constitutive equations (eqns (25),
Pagano 1978a), to seven equations. In addition, we impose on the flat laminate model the
condition that the axial strain is independent of the x coordinate (see Fig. 1) and we have
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where ei are the engineering expansional strain components. Substituting (40) into (49) and
simplifying gives

(50)

(51)

(52)

(53)

(54)

We obtain the analogous cylinder relations by substituting (38) and (42) into the cylinder
constitutive relationships, given by
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i = 1, 2, and J = 1, 2

XiJ=1JU-EU-SijKJPjK=O for i=3 and J=3,4,5

i = 5 and J = 3
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(57)

and assume, as in the laminate model, that the hygrothermal free expansion strain e5 = o.
Furthermore, terms of the order (Rj t) -2 are neglected and we can write

for XI! = X12 = X21 = X22 = X53 = 0, respectively. Dividing the constitutive equation X35 == 0
by R2 and neglecting terms of order (Rjt)-l and higher, we have

The constitutive equation X34 = 0 can be written as

(64)

It is established in (63) that the quantity in the brackets of (64) is zero. Therefore from
(64), we can write
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t 2

-3u+ ~a = 0 or
4

The constitutive equation X33 = 0 can be written as

(65)

(66)

Again, it has been shown by (63) that the quantity in the brackets of (66) is zero, reducing
(66) to

Adding the cylinder model eqns (60) and (61), we obtain

The hoop strain from torsionless axisymmetry is £e = u/r. Using the weighted displacement
definitions (12) with (7) and neglecting higher order terms in R, the strain and curvature
resultants of the hoop strain are given by £2 = a/Rand K2 = u* /R, respectively. Substituting
into (68), we get

(69)

Equation (69), for cylinders with R/t -> 00, is equivalent to the flat laminate constitutive
eqn (50). Adding the cylinder model eqns (58) and (59) we obtain

(70)

which is equivalent to flat laminate constitutive eqn (51). Flat laminate constitutive eqn
(52) is obtained by multiplying cylinder eqn (63) by -6/t2

. Using cylinder eqns (47), (60)
and (61) with the definition of K2' we obtain an expression that is equivalent to the flat
laminate constitutive eqn (53). Similarly, using (47), (58) and (59) we get (54). Flat laminate
constitutive eqn (55) is obtained using (65) and (67). Finally, flat laminate constitutive eqn
(56) is obtained using (62). Therefore, it has been shown that the seven flat laminate
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constitutive equations can be obtained from the infinite radius cylinder model constitutive
equations.

Prescribed interface boundary displacements
Using (40), the four flat laminate prescribed interface displacement boundary relation­

ships (from equations (28), Pagano 1978a), for assumed x-coordinate stress and strain
independence can be written as

(71)

(72)

(73)

(74)

The infinite radius cylinder model prescribed interface displacement boundary conditions
are given by

From (62) we can write

(79)

This can be expressed as

Substituting a' /2 given in (80) into (75) leads to
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which is equivalent to flat laminate prescribed displacement boundary eqn (71).
Similarly, substituting a'/2 given in (80) into (76) leads to

which is equivalent to the flat laminate prescribed displacement boundary eqn (72).
The recovery of the transverse/radial prescribed displacement boundary relationships

requires a greater effort. Multiplying (63) by 3/t2 and adding the results to (77) gives

Using equilibrium eqns (47), this can be expressed as

Equation (67) can be rewritten as

Thus we can write

Substituting aft given in (86) into (84) gives

From (65) and (67) we get
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(88)

Using (87) and (88), we get

which, recalling (48), is equivalent to the flat laminate boundary displacement eqn (73).
Similarly

which, recalling (48), is equivalent to (74). The flat laminate interface displacement con­
tinuity conditions (from equations (27), Pagano 1978a) are readily obtained from the
infinite radius cylinder model using the same procedure that was used to show equivalence
of the prescribed interface displacement boundary conditions.

Generalized stress relationships
The relationships between the generalized stresses of the flat laminate model and the

infinite radius cylinder model will now be investigated. Beside the obvious relationships
shown in Table 2, the relationships between P33, P34, P35 and P53 and the flat laminate
generalized stresses are considered.

Comparing equivalent equilibrium equations for the flat laminate and infinite radius
cylinder models allows us to investigate the relationships between the field variables for the
two models. It can be shown by equating the cylinder model F2 function of (43) with the
fifth of flat laminate eqns (26) from Pagano (l978a), that

(91)

Similarly, equating F3, F4 and F5 with the third, sixth and seventh of flat laminate eqns (26)
from Pagano (l978a), respectively, gives

(92)

(93)

(94)

It is seen that (92) and (94) are linearly dependent in P33 and P34' Therefore, P33' P34 and P35

cannot be explicitly expressed in terms of the flat laminate field variables. However, through
the use of (92) through (94), the flat laminate generalized transverse stresses can be expressed
in terms of the cylindrical field variables.
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MODEL VALIDAnON

The infinite radius cylinder model and the flat laminate model have been shown to be
analytically equivalent. However, the infinite radius cylinder model would require a change
in variables to reduce to the flat laminate mode. Therefore, the large radius cylinder model
is used to approximate the infinite radius cylinder in solving boundary value problems.

For modeling problems analogous to a flat laminate subjected to a uniform axial
strain, the cylinder is subjected to a small positive traction on its exterior while the interior
is traction free, inducing a tensile hoop strain in the cylinder. This method of inducing a
uniform hoop strain is only required for modeling flat laminate problems in which the
constant y and constant z boundaries are subjected to homogeneous boundary conditions.
However, the cylinder model is valid for mixed boundary conditions, consistent with the
model assumptions, on any surface of constant radius and on any surface on which ~ is
constant. Therefore, the model is not limited to analyzing problems in which the primary
loading is in the circumferential direction. Flat laminate problems that have symmetry
about both the y and z axes in which there is no applied traction and/or displacement
loading in the x direction, can be modeled with the large radius model using quarter
symmetry by constraining radial and axial displacements. As an example, this modeling
technique can be used to develop representative volume elements for transverse cracking
analysis and for analyzing pressurized crack problems.

A comparison of the numerical predictions from the large radius cylinder model and
the flat laminate formulation for a laminated free edge coupon will be presented. The
material properties are taken from Pagano (1978a), where the engineering moduli in the
planes of elastic symmetry of each layer are given by

Ell = 20 X 106 psi

E 22 = E)3 = 2.1 X 106 psi

G12 = G13 = G23 = 0.85 X 106 psi

V l2 = V I3 = V23 = 0.21.

We consider a comparison of the large radius cylinder and flat laminate free edge stress
field predictions for a four layer cross-ply laminate [0/90], in which the layers are of equal
thickness t. The width of the laminate is 2b = 16t. The laminate is modeled with N = 6
where N is the number of layers in one-half of the laminate thickness. Therefore, N = 6
implies that each physical layer of thickness t is modeled as three sub-layers, each of
thickness t/3.

The flat laminate formulation allows the use of quarter symmetry to model the laminate
while the axisymmetric model, with external pressure loading to induce a hoop strain,
requires the use of half symmetry to model the entire laminate thickness. Therefore, for
N = 6, the flat laminate model uses six sub-layers while the axisymmetric model uses 12
sublayers.

We let the total laminate average radius be denoted by R and the total laminate
thickness by T which for the present case equals 4t. To investigate the validity of using the
large radius cylinder model to analyze flat laminates, four models with different R/T ratios
are examined. A comparison of the flat laminate results and the axisymmetric cylinder
results for R/T ratios ranging from 100 to 100,000 are shown in Figs 4-6. Figure 4 shows
the distribution of the transverse normal stress at the 90/90 interface as a function of the
laminate width. The axisymmetric results quickly converge to the flat laminate results at
R/T of 10,000 the results are nearly identical to the flat laminate results. Similarly, Figs 5
and 6 show the distribution of the transverse normal and transverse shear stresses at the
0/90 interface.

In Figs 4 and 5, it can be seen that the artificial external pressure is not negligible for
R/Tvalues of 100 and 1,000. In Fig. 4, the differences between the normalized flat laminate
stress and the normalized stresses for R/T of 100 and 1,000 at y/b = 0 are 0.0543255 and



Stress fields and energy release rates 1047

0.35

0.30

0.25

,-....
\l.l 0.20
X

0

~
0.15

0.10

0.05

0.00

-0.05
0.00

- - .. - R!f=100

- - - R!f=l,OOO

. RII"=lO,OOO

- RII"=100,OOO

--FLAT LAMINATE

0.20 0040 0.60 0.80 1.00

ylb
Fig. 4. Transverse normal stress distribution at the 90/90 interface.

, 100
.~--_ .. - .......... ---- --- --- -_ .. _w_ .. __ ._ .. _...

"""- - .... ..... ....

1.00

..

0.800.60

•••• _~~.l~'~'4',~~
!y--1

....................................... :IL .

0.400.20

. - _.. Rrr=100

- . - Rrr=l,OOO

- RrI'=lO,OOO

- Rrr=l00,OOO

--FLAT LAMINATE

-0.05

0.00

0.35

0.30

0.25

,-.... 0.20
\l.l
X

-0 0.150

~
0.10

0.05

0.00

ylb

Fig. 5. Transverse normal stress distribution at the 0/90 interface.

0.0042634, respectively. For these two curves, if the ordinate values for all ylb are shifted
by an amount equal to these differences, the results for RIT of 100 and 1,000 are nearly
identical to the flat laminate results. The results of Figs 4-6 clearly indicate that the large
radius axisymmetric model provides nearly identical results to the flat laminate model for
the predictions of the free edge stresses in flat laminated coupons with transversely isotropic
layers.

CRACKED LAMINATE EXAMPLES

Numerical predictions for flat laminates containing delaminations and transverse
cracks will now be presented. The damage modeling capability of the large radius for­
mulation was first validated by comparison to a plane strain analytical solution by Konishi
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Fig. 7. Pressurized through crack in a flat isotropic body.

and Atsumi (1973). The flat transversely isotropic body of thickness T in the z Cartesian
coordinate direction and infinite in the x-y plane contains a pressurized crack of length 2a
at the mid-surface, as shown in Fig. 7. The body was modeled using quarter symmetry with
an RIT ratio of 100,000 and a width to thickness ratio of 20. Since plane strain conditions
in the hoop direction were required, no artificial external or internal pressure loading was
used. The only prescribed non-zero traction was pressure loading normal to the crack face.

Konishi and Atsumi (1973) plotted the normalized mode I stress intensity factor K J as
a function of layer height to crack length for various EziE, moduli ratios and assumed
Poisson's ratios Vvz = vzy = 0.28. For comparison, the layer thickness and the crack pressure
loading were arbitrarily selected as TI2 = 1.0 and (fo = 0.1.

The stress intensity factor prediction from the large radius model was determined by
calculating the energy release rate'S. The solution of the boundary value problem has an
exponential ( dependence (Pagano 1991) and'S was calculated directly using differentiation.
The relationship given by Sih and Liebowitz (1968) for a homogeneous orthotropic material
with a crack parallel to the plane of symmetry (modified for the present notation), provided
the stress intensity factor for the calculated energy release rate.

(95)

For plane strain we have,
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(96)

where aij are components of the elastic compliance matrix. Figures 8, 9 and 10 show the
stress intensity factor predictions from the analytical solution of Konishi and Atsumi (1973)
and the large radius model for Ez/Ey of 0.5, 1.0 and 1.5, respectively.

Using the material properties of the free edge problem above, the stress field ahead of
a transverse crack in a [0/90], laminate, as shown in Fig. 11, is evaluated. Using an RIT
ratio of 100,000, the transverse normal and shear stress predictions from the axisymmetric
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Fig. 11. Transverse crack in cross-ply laminate.

model are compared to those of the flat laminate model ASCA (1992) in Figs 12-14 where
it can be seen that the axisymmetric model results are nearly identical to the flat laminate
results.

Although delamination is typically preceded by transverse cracking, we will assume
here that we have a symmetric cross-ply laminate under uniform axial strain with a through­
length midplane delamination, following that of Whitney (1986). Consider a laminate with
the following ply properties

~~ = 14.0 i
2

2
= 0.533 i

2

3
= 0.323

E3
E

2

= 1.0 V12 = 0.30 V23 = 0.55.

A [0/90], laminated coupon containing a free edge delamination and subjected to an axial
strain was modeled as a cylinder with 11/T = 100,000 subjected to a small positive traction
on its exterior. All four lamina of the laminate, shown in Fig. 15 (one quarter of the
laminate is shown in the figure), were modeled with the axisymmetric model. The width to
thickness ratio 2b/T of the laminate is equal to 25. The face of the crack of length 2a, is
traction free. The normalized transverse normal stress distribution ahead of the crack tip
for a laminate with 2a/T = 5 and N = 6 is shown in Fig. 16. Considering that the transverse
normal stress is singular at the crack tip, the present theory gives strong evidence of the
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singularity due to the extreme stress gradient in the neighborhood of the crack tip and
because of the principle of "layer equilibrium" (Pagano 1978a) is equipollent with the
known result. The normalized energy release rate as a function of the crack length for
2a/ T :0::; 3 for the [0/90). laminate is shown in Fig. 17. The lower order theories of Whitney
(1986), Harikumar and Krishna Murty (1991) and Armanios and Badir (1990), all based
on shear deformation theory, all provide equivalent values of,,§ for crack lengths 2a/T ~ 2
where the energy release rate remains relatively constant. Lamination theory can also
accurately predict "§ for crack lengths 2a/T ~ 2. However, for crack lengths 2a/T < 2, these
approximate theories are expected to be inaccurate. The total energy release rate for edge
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Fig. 15. Free-edge mid-plane delamination.

delamination, as discussed by Sun and Jih (1987) and Raju et al. (1988), is well defined.
Therefore, oscillatory behavior of the total energy release rate for small crack lengths as
shown by Harikumar and Krishna Murty (1991) is not expected. Rather, as shown by
Wang (1983), it is expected that the total energy release rate tends to zero monotonically
as the crack length tends to zero.

For the present model, the energy release rate prediction for small crack lengths is
sensitive to the grading and thickness of the layers adjacent to the crack. It is known that
for 2alT = 0 the energy release rate is zero. Therefore, it is expected that the energy release
rate predictions approach zero with vanishing crack length. Letting ta be the thickness of
the layers directly adjacent to the delamination crack, Table 3 shows the energy release rate
predictions for various ratios of 2talT for a small crack length 2a1T:::::: 10-5

• We see that
the energy release rate decreases for decreasing 2talT. For the present example, with
RIT = 100,000 and 2taiT = 0.025, we have a radius to thickness ratio for the layers adjacent
to the crack tip of Rita = 8.0 X 106

.

CONCLUDING REMARKS

An approximate model to define the two dimensional thermoelastic response of flat
finite thickness orthotropic solids, to include discrete damage, has been developed. The
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Table 3. Normalized r,§ for various adjacent
layer thicknesses

2ta 2r,§

T E,€'T

0.250 0.002054
0.166 0.001579
0.025 0.000289
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model has been used to model damage modes in flat laminates. It has been shown that the
stress components and the governing equations of the infinite radius model and the flat
laminate model are analytically equivalent. However, the solution schemes require the use
of the large radius model that has been shown to provide stress field predictions that are
nearly identical to those of the flat laminate model in the presence of stress singularities.
Inducing a hoop strain in the large radius model, analogous to a prescribed axial strain in
the flat laminate model, requires an artificial internal or external pressure that when
normalized with respect to the hoop strain is negligible for R » T.

The large radius model is compared to existing flat laminate elasticity solutions for the
free-edge stress fields in axially loaded composite coupons. The model is utilized to examine
the crack-tip stress field around a transverse crack and a midplane crack for a bi-directional
laminate. The distribution of the mode I stress intensity factor versus crack length for
transversely isotropic materials compare well with the cited literature and was used to
examine the energy release rate distribution for small crack lengths in a cross-ply laminate.

As demonstrated in the transverse crack problem, the model is not limited to primary
internal or external pressure loading in the circumferential direction. The model is valid for
loading in the axial direction as well as the analysis of pressurized cracks. For problems in
which loading in the circumferential direction is not required, constraining radial dis­
placements on planes of constant radius permit for the use of midplane symmetry for
laminates with symmetric loading and stacking sequences.

The accuracy of the model can be improved by refining sublayers in the radial direction.
The thickness of the layers adjacent to points of singularity have a significant effect on the
accuracy of the model. The present model can approximate plane strain conditions in the
() direction for limited cases. Any non-zero radial displacement u indicates a non-zero hoop
strain, for u/R -+ 0 however, plane strain conditions can be accurately approximated.
Although locally zero hoop strain can be accomplished by constraining the radial dis­
placement on boundaries, currently the large radius model does not allow the hoop strain
to be prescribed globally and any radial or axial loading results in non-zero hoop strains.
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